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Processes and Functions
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Functions

f(x) = √x

√
x √x

f = ?input(x); !output(√x)

channelsfunction

(binding) input variable output expression
(bound) variable 
occurrence

read write

“read input into x; then write √x to output”
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Composing Functions

g(x) = (f ◦ f)(x)    ( = f(f(x)) )

input output
temp

√
x √x

input
temp

output
√

x √x

input temp
√

x √x
output

√
√√x

y √y
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Composing Functions

input temp
√

x √x
output

√
√√x

g = (ν temp)
?input(x); !temp(√x) |
?temp(y); !output(√y)

g(x) = (f ◦ f)(x)

channel creation (restriction/hiding/boxing)

(parallel/process) composition

“create a new channel and use it to compose two copies of f”
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Many inputs and outputs

in3

out1P
in2

in1

out2

P = ?in1(x); ?in2(y); !out1(x+y); P
⊕ ?in3(z); !out2(√z); !out1(2z); 0 

?in1

?in2

!out1

?in3

⊕

!out2 !out1
0

P

The ‘skeleton’ 
automaton
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That’s π-calculus

• To compose processes P we need:
o Composition: P | P (with identity elem. 0)
o Channel cration: (ν x) P (with x bound in P)
o Recursion: *P (equal to P | *P)

• To execute actions we need:
o Channel reading: ?c(x); P (with x bound in P)
o Channel writing: !c(M); P (with message M)
o Choice: P ⊕ P (with identity elem. 0)

• … and channels can be sent as messages!
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Generalizing Functions and Automata

• Unlike functions…
o Processes have multiple, explicitly named, input and 

output channels.

o Processes can run in parallel , can deadlock on their 
inputs, and can be nondeterministic in their outputs.

• Unlike automata (FSA)…
o Processes can transmit data (not just change state).

o While automata ‘talk’ to input strings, processes ‘talk’ to 
other processes: processes are communicating automata.

o Processes are not “finite state”; they can express 
unbounded computation in time (divergence) and space 
(proliferation).
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Algebraic Properties

• Functions have one binder and one rule:
o Function application:

If      f(x) =def M{x}       then f(a) = M{a/x}

• Processes have two binders and two rules:
o Communication (input ‘?’ binder)

(?c(x);P{x}) ⊕ P’  |  (!c(a);Q) ⊕ Q’      =     P{a/x} | Q

o Scope extrusion (new ‘ν’ binder)

If x not occurring in Q   then  ((ν x)P) | Q = (ν x)(P|Q) 
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Implementations
• SPiM (Stochastic Pi Machine)

o http://lepton.research.microsoft.com/VisualSPiM/

o Runs in a browser with Silverlight.



Processes and Chemistry



[A]• = -r[A] Exponential Decay 

[Ai]• = -r[A1][A2] Mass Action Law

[A]• = -2r[A]2 Mass Action Law
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Continuous Chemical Systems

A →r B1 + … + Bn

A1 + A2 →r B1 + … + Bn

A + A →r B1 + … + Bn

Degradation 

Asymmetric Collision

Symmetric Collision

(assuming A≠Bi≠Aj for all i,j) 

Continuous reaction kinetics, respectively:

Reactions:
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π-calculus for Chemistry

• To compose soups P we need:
o Stochastic channels: (ν xr) P r is the rate of an exponential distribution: 

the rate of communication on that channel

o Composition: P | P (with identity elem. 0)

o Recursion: *P (equal to P | *P)

• To execute species we need:
o Collision: ?xr; P (with no input variables)

o Co-collision: !xr; P (with no output messages)

o Delay: τr; P ( = (ν xr) ?xr;P|!xr;0 for any x not in P) 

o Choice: P ⊕ P (with identity elem. 0)
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Discrete Chemical Systems (1)

A →r B1 + … + Bn

Reaction:

A = τr; (B1|…|Bn)

Discrete reaction kinetics:

The mathematical meaning of that is a Continuous Time Markov Chain 
(for a specific set of initial conditions, e.g. a single A molecule), here 
represented as a transition graph:

A B1|…|Bn

r

Hence the π-calculus description abstracts from initial conditions (like ODEs).
For each set of initial conditions, a CTMC can be systematically extracted 
from the stochastic π-calculus models.
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Discrete Chemical Systems (2)

c: A1 + A2 →r B1 + … + Bn

(Uniquely named) reaction:

A1 = ?cr; (B1|…|Bi) (the name of the reaction becomes the channel)

A2 = !cr; (Bi|…|Bn) (splitting results is arbitrary: 1≤i≤n)

Discrete reaction kinetics:

A1|A2 B1|…|Bn

r

With initial conditions A1|A2 (single molecules), the CTMC is:
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Discrete Chemical Systems (3)

c: A + A →r B1 + … + Bn

(Uniquely named) reaction:

A = ?cr/2; (B1|…|Bi) ⊕ !cr/2; (Bi|…|Bn) 1≤i≤n

Discrete reaction kinetics:

A|A B1|…|Bn

r/2

With initial conditions A|A (two molecules), the CTMC is as follows; 
note that each copy of A can do an input or an output, so there are 
two possible paths to the outcome:

A|A B1|…|Bn

r
That is:

r/2



2012-02-21Luca Cardelli 17

From Reactions to Processes
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v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

v1(k1) v2(k2) v3(k3) v4(k4/2)

A ?;(C|C) ?;D

B !;0

C !;0 τ;(E|F)

D

E

F ?;B

!;0

channels 
(1 per reaction)

pr
oc

es
se

s
(1

 p
er

 s
pe

ci
es

)

Interaction
Matrix

Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add τ;Pi to <X,vi>. 

Asymmetric reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>

Symmetric reaction vi: X+X →ki Pi

add ?;Pi and !;0 to <X,vi>

Half-rate for 
symmetric 
reactions

Read out the processes by rows:

A =?v1(k1);(C|C)  ⊕ ?v2(k2);D 

B = !v1(k1);0

C = !v2(k2);0  ⊕ τk3;(E|F)

D =0 

E = 0 

F = ?v4(k4/2);B  ⊕ !v4(k4/2);0 

A

B C

D

EF

C
k1

k2

k4

k3
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That Chemical System in SPiM
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A = ?v1(k1);(C|C)  ⊕ ?v2(k2);D 

B = !v1(k1);0

C = !v2(k2);0  ⊕ τk3;(E|F)

D = 0 

E = 0 

F = ?v4(k4/2);B  ⊕ !v4(k4/2);0

directive sample 10.0

directive plot A(); B(); C(); D(); E(); F()

val k1 = 0.001  new v1@k1:chan

val k2 = 0.001  new v2@k1:chan

val k3 = 1.0

val k4 = 0.001  new v4@k4/2.0:chan

let A() = do ?v1;(C()|C()) or ?v2;D()

and B() = !v1

and C() = do !v2 or delay@k3;(E()|F()) 

and D() = ()

and E() = ()

and F() = do ?v4;B() or !v4

run 300 of (A()|B()|C()|D()|E()|F())

A

B C

D

EF

C
k1

k2

k4

k3

Gillespie-style
stochastic simulation
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Modeling Techinques

• That is a systematic way to translate 
reactions to processes.

• But there can be better ways to do it.

• That is, ways that producemore compact 
and/or modular models, but with the 
same kinetics.
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Ex: Catalysis

• Two reactions, same catalyst C
o According to the general scheme the catalyst uses 

one channel for each reaction it catalyzes

o Modularizing: the catalyst has its own catalysis 
channel c, used for all the reactions it catalyzes:

a:   A + C →r C + B

b:   D + C →r C + E

C = !ar; C ⊕ !br; C

A = ?ar; B

D = ?br; E

A + C →r C + B

D + C →r C + E

C = !cr; C 

A = ?cr; B

D = ?cr; E
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Ex: System Analysis

• 16-reaction abstract model of cell-cycle switch.

↑

xp
↓

← sxp	→ 150
0

15

Pr(xp|sxp)

150
150

0

0

↑

xs
↓

← sxs	→

sx (hor axis): input value
x (ver axis): output value at equilibrium

Black line: deterministic bifurcation diagram
Red line: stochastic simulation (sxs,xs) at size xmax=150 [by SPiM]
Heatmap: discrete probability distribution (sxp,xp) at size xmax=15 [by PRISM]

(Joint work with Attila Csikasz-Nagy)



Processes and Biochemistry



2012-02-21Luca Cardelli 23

π-calculus for Biochemistry

• Biochemistry here means: direct modeling of 
complexation and polymerization.

• We now go back to the full (and stochastic) π-
calculus: we need to pass channels as messages!
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Complexation

A + B   s↔r A:B 
There is no good notation for this reaction in chemistry: A:B is considered 
as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in π-calculus. There is a single 
public association channel ar at rate r, and many private dissociations
channels ds at rate s, one for each complexation event (created by ν):

Afree = (ν ds) !ar(ds); Abound(ds)
Abound(ds) = !ds; Afree

Bfree = ?ar(ds); Bbound(ds)
Bbound(ds) = ?ds; Bfree

More compactly:

A = (ν ds) !ar(ds); !ds; A
B = ?ar(ds); ?ds; B 

Note that we are describing A independently of B: as in 
the catalysis example, A could form complexes with 
many different species over the ar channel.
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Polymerization

• Polymerization is iterated complexation
o It can be represente in π-calculus finitely, 

with one process (definition) for each monomer.

o Note that polymerization cannot be described finitely
in chemistry (or ODEs) because there it needs one 
reaction for each length of polymer.

o The reason it works in π-calculus is because of the ν
operator. It enables the finite representation of 
systems of potentially unbounded complexity. 

o Like real biochemistry, where the structure of each 
monomer is coded in a finite piece of DNA, and yet 
unbounded-length polymers happen.



Conclusions
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Conclusions

• π-calculus
o A mathematical notation for reactive systems
o In stochastic form, suitable for representing discrete 

chemistry, biochemistry, etc.
o Some unique properties: ability to finitely express systems 

of unbounded complexity, like networks of complexing
proteins.
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